

Anything you want as long as you say Petabyte/Petascale

Data[^]Management and Mining for Ultra-Large Photometric Surveys

Andrew Connolly Department of Astronomy

With thanks to: Zeljko Ivezic, John Peterson, Garrett Jernigan, Jim Pizagno, Andy Becker, Andy Rasmussen, Kirk Gilmore, Simon Krughoff, Lynne Jones, Francesco Pierfederici, Phil Pinto, Alan Meert

Simulating the Sky

Simulating a Petabyte Data Stream

LSST data flow

- ½ the sky every 3 nights
- 40 TB of imaging per night
- 109 sources a night
- 10³ "events"
- 1000x in 10 years
- 5 months to watch 1 year of data on an HDTV.

Simulation flow with LSST

- 1 Petabyte after year one
- 60 Petabytes of images after 10 years
- Galaxies, stars, weak lensing, extinction, solar system objects... images

Base Catalog Design

Atomic representation of input catalogs

- Evolving Base catalogs
 - Input cosmologies
 - Milky-way model
 - Extinction screen
 - Shear maps
 - Consistent API
- Extended implementation
 - Defects
 - Moving sources
 - Extended sources (add your own image)
- Initial database access
 - Mysql moving to sqlserver

Cosmology

Millennium Simulations

- Kitzbichler and White (2006)
 - 6 fields, 1.4x1.4 deg per field
 - 6x10⁶ source per catalog
 - Based on Croton et al (2006) and De Lucia and Blaizot (2006) models
 - r<26 magnitude limit
 - z>4 redshift limit
 - BVRIK Johnson and griz SDSS
 - Extended to fit LSST u,g,r,i,z,y3
 - Derived SED for all sources

"Observing" the LSST Simulation

An instance catalog

- Sampling the base catalog using outputs from OpSim
- Position, atmosphere, filter, time
- Sample light curve as well as static populations
- r<28 to simulate the sky accurately
- Output catalogs and metadata for the photon tracing simulations
- SQL and python interfaces

From Catalogs to Photons and Back

- Ray Tracing the sky
 - High fidelity simulator
 - Based on Physics of atmosphere, telescope, camera, detector
 - Input catalog and images with associated SEDs
 - Produce realistic images
 - Understand characteristics of the PSF
 - Model thermal effects
 - Wavelength dependent effects

Catalog Generation (Millennium Simulations)

Image Generation (Full Photon Ray Tracing)

Atmosphere Models & Kolmogorov turbulence

Turbulent screens

- Data from Cerro Pachon
- Arbitrary number of screens
- Arbitrary velocity vectors
- Photons ray traced and shifted
- Vector Screen:
 - 2048 squared
 - 0.1m/pixel

Vernin et al., Gemini RPT-A0-G0094

Telescope Optics

Telescope model

- LSST baseline design
- Input zemax model
- Fast ray trace
- Calculates ray intercepts
- Fast reflection and refraction algorithms
- Wavelength-dependent effects

Camera and Detector model

Focal plane model

- Modeling for 200 CCDs in focal plane
- Incorporates chip gaps, boron implants
- Chip pistoning and surface effects

Detector model

- Refraction for light entering the Si surface
- Photon interaction (wavelength and temperature dependence)
- Lateral charge diffusion

Rasmussen and Gilmore

Examples: Thermal and mechanical distortions

Simulating perturbations

- Each optic has 6 dof (decenter, defocus, three euler angles)
 - Perturbations are placed on the three mirrors using a Zernike expansion to simulate the possible residual control system errors each mirror can have an arbitrary amplitude code goes up to 5th order polynomials

e.g. Mirror Defocus

LSST focal plane

- Simulating 3.2 Gpixels
 - 10¹¹ photons per focal plane
 - 12.8 GB per image
 - 2000 CPU hrs per focal plane
 - Simulated CCD at a time
 - Moving to amplifier granularity
- Distributing the load
 - Condor pool as the initial pipeline (Purdue)
 - Refactored to run under Hadoop (Mapreduce)
 - Finer granularity
 - Run across 1000 cores and up

Meert (Purdue)

An LSST Focal plane

Each LSST pointing – 12.8 GB
Each simulation – 10¹¹ photons
2000 CPU hours per camera image
(15s exposure)

Challenges ahead (lessons we will learn)

Supporting a full end-to-end simulation

- Database access for science collaborations
 - Derived catalogs and images with variability
 - Enabling science with LSST ahead of time
 - Many different use cases
- Challenge of a fully distributed system
 - Data size is a challenge simulating LSST database 7 years ahead of time
 - CPU load is a challenge looking at map-reduce,
 Dryad, Hadoop as a distributed system
 - Compute and storage resources

Give me your tired, your poor, Your free cycles and particles yearning to breathe free, The wretched refuse of your teeming shore.

Emma Lazarus (sort of)